Transformations Review

Stretches:

y = af(x)	a > 0	vertical expansion	for every x value, y expands by a factor of a
	0 < a < 1	vertical compression	for every <i>x</i> value, <i>y</i> compresses by a factor of a
y = f(bx)	b > 0	horizontal compression	for every <i>y</i> value, <i>x</i> compresses by a factor of $\frac{1}{b}$
	0 < b < 1	horizontal expansion	for every y value, x expands by a factor of $\frac{1}{b}$

Reflections:

y = -f(x)	reflection in the $x - axis$	y values become $-y$
y = f(-x)	reflection in the $y - axis$	x values become $-x$
$y=f^{-1}(x)$	reflection in the line $y = x$	(x, y) coordinates become (y, x)

Translations:

y = f(x) + k	<i>k</i> > 0	vertical translation up	y values become $y + k$
	<i>k</i> < 0	vertical translation down	y values become $y - k$
y = f(x-h)	h > 0	horizontal translation right	x values become $x + h$
	h < 0	horizontal translation left	x values become $x - h$

*** y = f(x-3), h = 3, x values become x + 3

<u>Order of Transformations Given the form :</u> y = af(b(x-h)) + k

- 1. Stretches/Reflections
- 2. Translations

$$y = f^{-1}(x)$$

For the graph or points of the inverse of a function, (x, y) coordinates switch. When working with equations, switch x and y then solve for y.

$$y = \frac{1}{f(x)}$$

For the reciprocal of a function, every y value becomes $\frac{1}{y}$. When y = 0, a vertical asymptote occurs.

$$y = \left| f(x) \right|$$

All negative y values become positive. All positive y values stay positive. y = 0 remains y = 0.

$$y = f(|x|)$$

For positive x values and x = 0, y values remain unchanged. For negative x values, the y values become the same y value as the equivalent positive x value has. Visually, the graph for x < 0 mirrors the right side, $x \ge 0$.

Key points to remember:

1. FACTOR, FACTOR, FACTOR!

- 2. f(x) represents a y value
- 3. Anything affecting the *x* value is in the ()
- 4. Absolute value signs are a type of bracket. Do what is in the brackets first.
- 5. When changing an equation, replace the affected letter with brackets. Example: Translation 2 units right. Replace x with (x-2)

Review Questions

1. Point A(3,-4) is on the graph of y = f(x). What point must be on the graph of:

a)
$$y = 2f(x-3)+1$$

b)
$$y-3 = f(2x-4)$$

c)
$$y = -\frac{1}{4}f(6-x) - 5$$

d)
$$y = \frac{1}{f(x+1)} + 3$$

e)
$$y = \left|\frac{1}{f(3x)}\right| - 2$$

f)
$$y = f^{-1}(x)$$

2. Describe how the function relates to
$$y = f(x)$$
.

a) $y = \frac{1}{2}f(x) - 4$

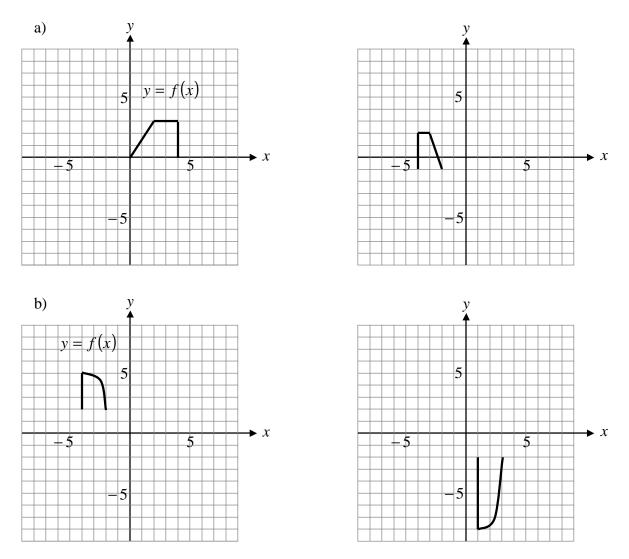
b)
$$4y = f(x-3)+8$$

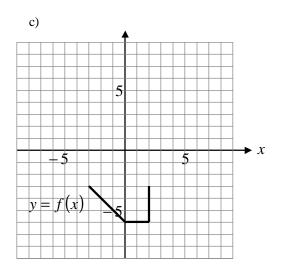
c)
$$y = f(6-2x)$$

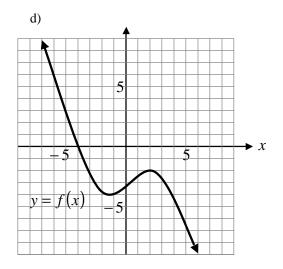
$$d) \qquad y = -f(x) - 7$$

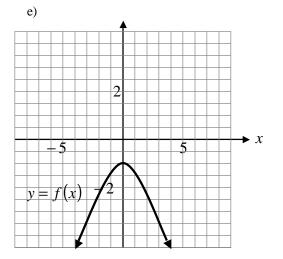
e)
$$y = f^{-1}(x)$$

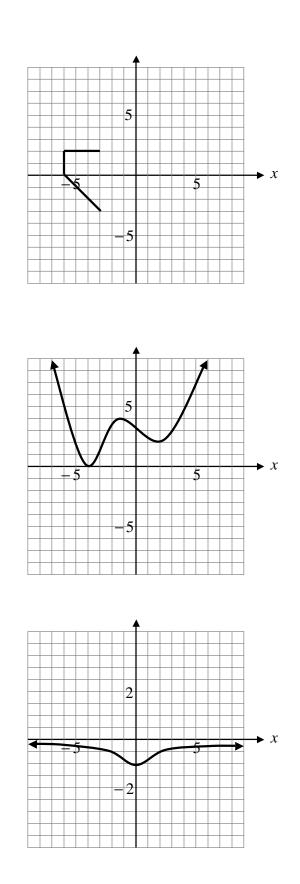
f)
$$y = -f(-x)+1$$

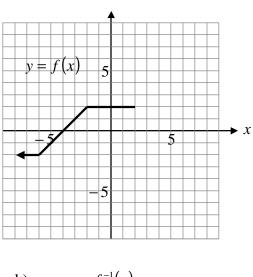

- 3. The graph of $y = (x-2)^2 1$ represents y = f(x). What are the coordinates of the point(s) that would be invariant for the following transformations?
 - a) y = -f(x)
 - b) y = f(-x)
 - c) $y = \frac{1}{2}f(x)$
 - d) y = f(4x)
 - e) $y = \frac{1}{f(x)}$ (for this transformation, give just one answer of the three possible)
- 4. Given the following equations, determine the new equation after the following transformations.
 - a) $y = \sqrt{x}$ a vertical expansion by a factor of 3, then a reflection in the y-axis, then a translation 7 units up
 - b) y = |x| a horizontal compression by a factor of $\frac{1}{2}$, then a reflection in the x-axis, then a translation 4 units left
 - c) y = 3x 5 a reflection in the line y=x, then a translation 2 units right, then a translation 5 units down
 - d) $8x^2 + y^2 = 2$ a horizontal expansion by a factor of 2, then a vertical compression by a factor of $\frac{1}{3}$.
 - e) $y = x^4 + x^3 2x^2 + 3$ a reflection in the y-axis, then a translation of 5 units up, then a vertical expansion by a factor of 3

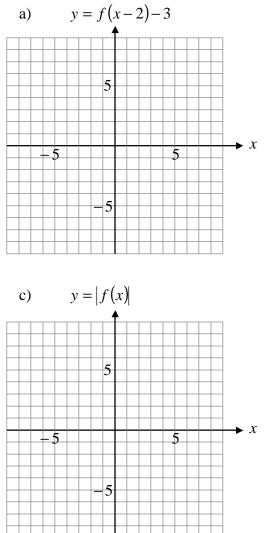

- 5. Determine the equation of $y = f^{-1}(x)$, the inverse, for the following equations.
 - a) $f(x) = \frac{1}{3}x + 2$

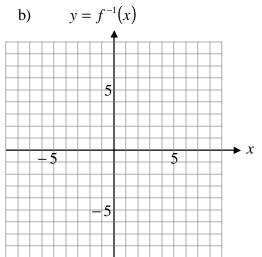

b)
$$f(x) = 2(x+3)^2 - 4$$

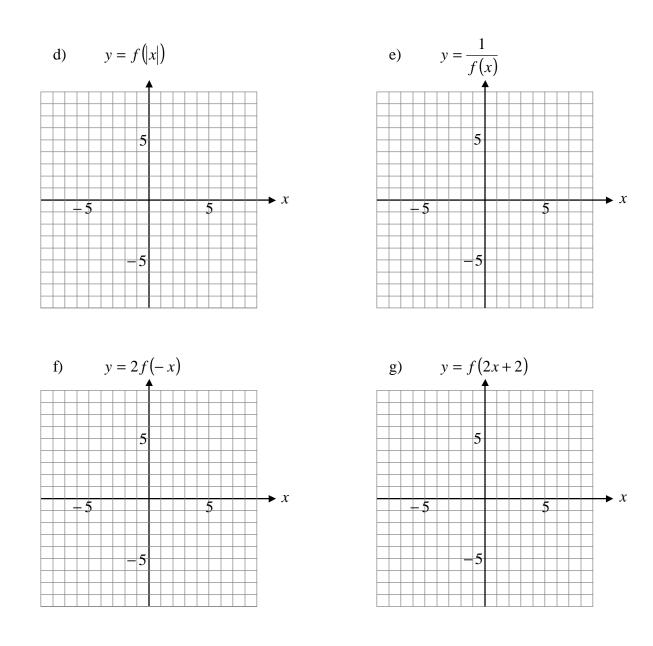

c)
$$f(x) = \frac{1}{x+2}$$


6. Given the graphs of y = f(x), determine the equations of the graphs with the transformations shown.



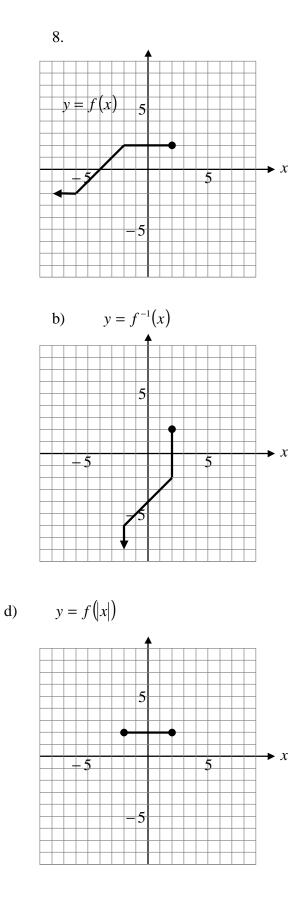


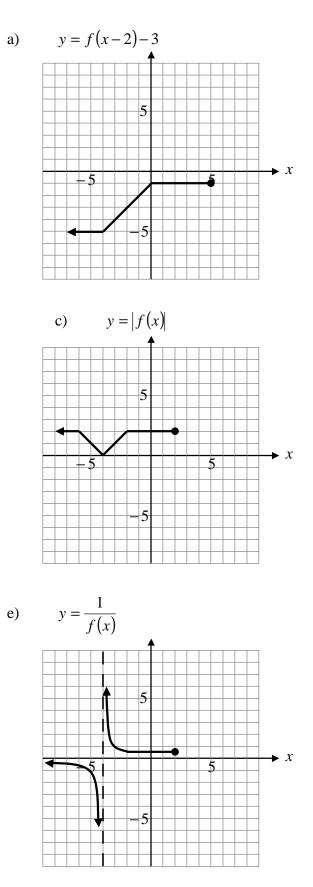


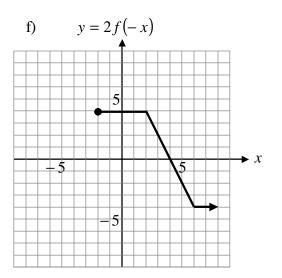


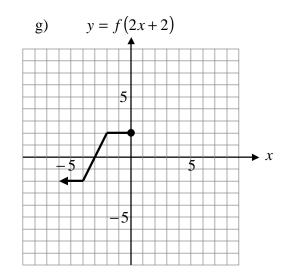
- 7. Point C(a,b) is on the graph of y = f(x).
 - a) What point must be on the graph of $y = -\frac{1}{3}f(x+4)$?
 - b) What point must be on the graph of $y = \frac{1}{f(x-2)} + 3$?
 - c) If point *C* is the vertex of a parabola that opens up, what is the domain and range of $y = f^{-1}(x)$?
 - d) If point *C* is the vertex of a parabola that opens up, and a > 0, b < 0, what is the domain and range of y = |f(x)|?
- 8. Given the graph of y = f(x), sketch the following graphs:

Solutions


1. a)
$$(6,-7)$$
 b) $\left(\frac{7}{2},-1\right)$ c) $(3,-4)$ d) $\left(2,\frac{11}{4}\right)$ e) $(1,2)$ f) $(-4,3)$


- 2a) Vertical compression by a factor of $\frac{1}{2}$, then a vertical translation 4 units down.
- b) Vertical compression by a factor of $\frac{1}{4}$, then a horizontal translation 3 units right and a vertical translation 8 units up.


- c) Reflection in the y-axis and a horizontal compression by a factor of $\frac{1}{2}$, then a horizontal translation 3 units right.
- d) Reflection in the x axis, then a vertical translation 7 units down.
- e) Reflection in the line y = x.
- f) Reflection in the x axis and a reflection in the y axis, then a vertical translation 1 unit up.
- 3. a) (1,0),(3,0) b) (0,3) c) (1,0),(3,0) d) (0,3) e) (2,-1)


4. a)
$$y = 3\sqrt{-x} + 7$$
 b) $y = -|2x+8|$ c) $y = \frac{1}{3}x - 4$ d) $2x^2 + 9y^2 = 2$
e) $y = 3x^4 - 3x^3 - 6x^2 + 24$
5. a) $y = 3x - 6$ b) $y = \pm \sqrt{\frac{x+4}{2}} - 3$ c) $y = \frac{1}{x} - 2$
6. a) $y = f(-2x-4) - 1$ b) $y = -2f(x-5) + 2$ c) $y = f^{-1}(x)$
d) $y = |f(x)|$ e) $y = \frac{1}{f(x)}$
7. a) $\left(a - 4, -\frac{b}{3}\right)$ b) $\left(a + 2, \frac{1}{b} + 3\right)$ c) $D : x \ge b$, R : all real numbers

d) D: all real numbers, $R: y \ge 0$

